Cohomology of Modules in the Principal Block of a Finite Group

نویسنده

  • D. J. Benson
چکیده

In this paper, we prove the conjectures made in a joint paper of the author with Carlson and Robinson, on the vanishing of cohomology of a nite group G. In particular, we prove that if k is a eld of characteristic p, then every non-projective kG-module M in the principal block has nontrivial cohomology in the sense that H (G;M) 6= 0, if and only if the centralizer in G of every element of order p is p-nilpotent (this was proved for p odd in the above mentioned paper, but the proof here is independent of p). We prove the stronger statement that whether or not these conditions hold, the union of the varieties of the modules in the principal block having no cohomology coincides with the union of the varieties of the elementary abelian p-subgroups whose centralizers are not p-nilpotent (i.e., the nucleus). The proofs involve the new idempotent functor machinery of Rickard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

Extension functors of local cohomology modules

Let $R$ be a commutative Noetherian ring with non-zero identity, $fa$ an ideal of $R$, and $X$ an $R$--module. Here, for fixed integers $s, t$ and a finite $fa$--torsion $R$--module $N$, we first study the membership of $Ext^{s+t}_{R}(N, X)$ and $Ext^{s}_{R}(N, H^{t}_{fa}(X))$ in the Serre subcategories of the category of $R$--modules. Then, we present some conditions which ensure the exi...

متن کامل

Serre Subcategories and Local Cohomology Modules with Respect to a Pair of Ideals

This paper is concerned with the relation between local cohomology modules defined by a pair of ideals and the Serre subcategories of the category of modules. We characterize the membership of local cohomology modules in a certain Serre subcategory from lower range or upper range.

متن کامل

Cohomology of Modules in the Principal Block ofa Finite

In this paper, we prove the conjectures made in a joint paper of the author with Carlson and Robinson, on the vanishing of cohomology of a nite group G. In particular, we prove that if k is a eld of characteristic p, then every non-projective kG-module M in the principal block has nontrivial cohomology in the sense that H (G; M) 6 = 0, if and only if the centralizer in G of every element of ord...

متن کامل

ON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS

Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995